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LETI‘ER TO THE EDITOR 

Properties of the density relaxation function in classical 
diffusion models with percolation transition 

J KertCsz? and J Metzger 
Physik-Department der Technischen Universitat Munchen, D-8046 Garching, FRG 

Received 5 September 1983 

Abstract. The relation between the density relaxation function @ and the pair connected- 
ness is shown. Static and dynamical scaling for @ and quantities related to it are derived 
from percolation scaling theory. Due to finite clusters @ contains a non-ergodic singularity 
even in the conducting phase, whence a Green-Kubo identity does not hold. The form 
factor of this singularity is discussed. For d 3 3 the static polarisability can be related to 
a diverging characteristic length also above the threshold. Contributions come from 
confinement in finite clusters and from the structure of the infinite cluster. 

Classical diffusion in disordered media is of much practical and theoretical interest. 
The conductor insulator transition in such systems is closely related to percolation 
phenomena. (For reviews on percolation theory see Deutscher et a1 (1983), Stauffer 
(1979) and Essam (1980).) The diffusion models can be of hopping character, like 
‘the ant in the labyrinth’, i.e. a random walker on percolation clusters (de Gennes 
1976), or they can be continuous, like the Lorentz model (see e.g. Hauge 1974). In 
these models the system becomes insulating if the paths of the diffusing particle are 
blocked at the percolation threshold pc. Since theoretical approaches (Gotze et al 
1981, Odagaki and Lax 1981, Webman 1981) heavily use the concept of the density 
relaxation function, it seems to be worth investigating what can be said about this 
function from the point of view of percolation theory. 

Let us briefly list some well known results. We give here the formulae for d-  
dimensional lattice site and bond percolation. The transformation to continuum 
problems is trivial if universality is supposed to be true (see e.g. KertCsz and Vicsek 
1982): instead of site occupation probability one has to take the allowed volume 
fraction, and instead of discrete sums, integrals have to be performed. 

The pair connectedness C ( r ,  p ,  h )  (see e.g. Essam 1980) can be written as a sum 
(Stauffer 1978): 

where n , ( p ,  h )  = n , ( p )  exp(-hs), n , ( p )  is the number of s-clusters per site at an 
occupation probability p ,  ~ ( r )  is 1 if the site at r belongs to the same cluster as the 
origin and 0 otherwise. (. . .ICs) denotes the configurational average with the condition 
that the origin belongs to an s-cluster. The prime on the summation symbol indicates 
that only finite cluster contributions are to be taken. For convenience a ghost field h 

t Present and permanent address: Research Institute of the HAS, Budapest, H-1325, Hungary. 
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has been introduced. (For a physical interpretation of the ghost field see Reynolds et 
al (1977). In diffusion models h # 0 could mean allowed hops via the ghost site.) 

Near the critical point, p = p c ,  h = 0, the pair connectedness has a scaling form 
(Essam 1980): 

C ( r ,  E ,  h )  = L - 2 P / " C ( r / L ,  EL'", hL-P'Y+d ) (2) 

where E = p - p c ,  ( l e /<<  1, h << 1 is implied here and in the following), Y is the critical 
exponent of the coherence length r (  p )  a I E I - ~  and p is the critical exponent of the 
percolation probability P,( p ) a  E ~ ,  p >  pc .  The definition PE( p ,  h )  = 1 - p ~ (  p ,  h ) / p s ;  
p ~ (  p ,  h )  = Z' sn,( p,  h ) ,  where ps = 1 or p for bond and site percolation, respectively, 
expresses for h = 0 the conservation of probability. 

We now turn to describe the properties of the classical density relaxation function 
@ ( r ,  t )  of a tagged particle moving in a random environment, which describes the 
probability of the particle to be at site r at time t, if it has started ( t  = 0 )  at the allowed 
site 0. @ ( r ,  t )  is a function which can be measured in a molecular dynamics experiment. 
Assuming that the distribution of the particle in the allowed region is uniform at t + CO 

(Vicsek 1983), one has immediately the representation 

(3) 

where a formal extension to the h # 0 case has been included and the dependence on 
p and h has been indicated. N is the total number of lattice sites. 

One quantity of interest is the probability of finding the particle for t + 03 at the 
same place where it has started from (see e.g. Odagaki and Lax 1982, Haus et al 
1983). Equation (3) allows us to establish a nice relation between this quantity and 
the generating function of percolation theory: 

W r ,  t-,m/p, h )  =(lip,) {I;' sn,(p,  h ) ( r l ( r ) / S ( G ) + P , ( p ,  h ) l N )  

W O ,  ~ + ~ l p , 0 ) = ( l / p s )  Z' n s ( p )  (4) 

where we have used that in the thermodynamic limit ( N - t  03) the last term of the RHS 
of (3) vanishes, and that (7(O)/C,)  = 1. The RHS of (4) is known to exhibit a singularity 

for p + p c  (Stauffer 1979). a is the exponent of the 'specific heat'. Equation 
(4) can be confirmed by an exact calculation on the Bethe lattice (Odagaki and Lax 
1982, Fisher and Essam 1961). 

Generalising the representation (3) to arbitrary times one can write 

@ ( c  tb, h )  = @dr, tip, h )  +@,(r ,  t ( p ,  h )  ( 5 )  

where QF and are the two distinct contributions according to a starting point on 
a finite cluster or on the infinite cluster. @,( r, t + alp, h )  vanishes in the thermodynamic 
limit, expressing the obvious fact that the particle diffuses away on the infinite cluster, 
when it started on it. Once started on a finite cluster, the particle can never escape 
and thus the correlations described by do not decay. Correspondingly the Fourier 
and Laplace transform @(q, z )  = I;, exp(-iqr) i I," d t  exp(izt)@( r, t )  contains a singular- 
ity -f(q, p ) / z ,  or equivalently a 6 ( w )  singularity in the Fourier spectrum, reflecting 
the non-ergodic behaviour of the system (Kubo 1957, Gotze 1978, 1981, 1982). 
Representations (5) and (3) show that even for p 2 pc there is a non-ergodic contribution 
to @(r,  t ) .  This has the following consequence: the representation for small wavenum- 
bers, known as the Green-Kubo identity 

Iim@(q, z )  = - 1 / ( z + q 2 ~ ( z ) ) ,  
q-0 
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with K (  z )  being the frequency dependent diffusion coefficient, is here an approximation 
only. The non-decaying correlations stemming from finite clusters are neglected 
thereby. 

The situation is different if the particle has to be described by quantum mechanics 
and if the generally accepted view, that extended and localised states do not coexist, 
is true. Then it follows that Kubo’s (1957) density relaxation function, which is the 
analogue of our Q, in quantum systems (Gotze 1982), does not exhibit a non-ergodic 
singularity in the conducting phase. Some clarifying remarks may be helpful here. 
Our density relaxation function is not identical with the density-density correlation 
function S ( q , w )  of n particles, measurable in a scattering experiment. The 
inhomogeneous particle density, arising from static disorder (e.g. non-allowed 
volumina) and acting as scattering potential, yields an elastic S ( w )  contribution to 
S(q ,  0 ) .  This S ( w )  singularity is in full analogy to the one calculated for a quantum 
system by Belitz eta1 (1983). In the thermodynamic limit Q,(r, t + 00) = 0, if the particle 
has always the possibility to diffuse away. Thus the S ( w )  singularity in Q, is indeed 
the characteristic of non-ergodicity (Kubo 1957, Gotze 1978, 1981). 

Comparing (1) and (3) we arrive at the relation 

- a ~ ( r , t + m l p , h ) / a h = C ( r , p , h )  ( 6 )  

@ ( r ,  t + a I E ,  h )  = L-P’”-dQ,(r /L ,  t+0O1EL1’”, hL-P’”’d 1. 
and from the scaling form (2) for C near to the critical point 

(7) 

Hence one concludes that the prefactor of the non-ergodic singularity has the following 
properties: 

Using further that f ( q  = 0, p )  = fi( p ) / p , ,  which is easily seen from (3) ,  and the obvious 
properties f ( q ,  p ’ =  0) = 1,  f ( q ,  p = 1) = 0, one can draw the qualitative behaviour of 

Turning back to equation (7) ,  we assume a dynamical scaling form in analogy to 
earlier ones, introduced to describe the critical time dependence of the mean square 
distance of the particle from the starting point ( (hr ( t ) ) ’ )  (Straley 1980, Gefen et a1 

f(q, P )  (figure 1). 

P 

Figure 1. The prefactor f(q, p )  of the non-ergodic contributions in @(q,  z )  The full line 
represents f (0 ,p) .  q is growing along the arrow. At p ,  there is a non-analyticity (8b) .  
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1983), which were tested by huge Monte Carlo simulations (Pandey and Stauffer 1983): 

@(r,  ti&, h )  = L - P / ” - d @ ( r / L ,  t/LilsL1”, hL-p/w+d ) (9) 

where Z is the dynamical exponent. The scaling form (9) should be valid for both QF 
and Using 

( M i ) ) ’ )  = c r’Wr, t )  
r 

then (5) implies that the mean square displacement can also be decomposed into two 
parts R $ ( t )  and R&( t ) ,  according to the starting position. With the help of (9) one 
concludes 

R$(  t )  JsJ-’”+@, P Z P C ,  t + w ,  ( l o a )  

RL ( t )  a E p t  +constant E-’ + I (  t ) ,  P > P c ,  t+w, ( lob )  

((Ar(t))’)a t’’(*+’), p = p c ,  t + w .  (10c) 

Here p is the critical exponent of the diffusion constant, and Z = ( l / v )  ( 2 v - @ + p ) ,  
and thereforefrom (9) and(10c) 2 / ( 2 + 8 ) = ( 2 ~ - @ ) / ( 2 ~ - p + p )  (Gefen eta1 1983). 
The origin of the function l ( t )  in ( lob )  can be understood if one considers the exact 
relation 

((Ar( t ) ) ’ )  = 2d dT { t  - T}K ( T ) ,  ld 
K ( t )  being the time dependent diffusion coefficient. In the low scatterer density limit 
of the Lorentz model it is known that K(t )a t - (d /2+1)  for t+a (Ernst and Weyland 
1971). Accepting universality arguments, analogous to the case of liquids (Forster et 
a1 1977), one expects the same behaviour for all p c < p <  1. Then l ( t ) a l n ( t )  in d = 2  
and I( t + CO) = 0 for d 2 3. In hopping models of diffusion the same long time tails are 
predicted (Odagaki and Lax 1981, Haus et a1 1983). For d a 3  one can therefore 
define a diverging length ro by means of 

even for p >  p c ,  which is the analogue of the localisation length introduced for p < pc 
(Gotze 1978). 

For p < p c  ( l o a )  is a rederivation of a known result (Stauffer 1979), where here 
only a scaling assumption for the pair connectedness (2) was used. As can be seen 
from (IO), rs a E- ’ ”+@ for p > p c  too. ro consists of two parts: the finite cluster 
contributions ( l o a )  are similar to the p < pc case (KertCsz 1983), and an infinite cluster 
contribution comes from the fact that the coherence length 6 is present in the structure 
of the infinite cluster (Stanley and Coniglio 1983). 

The quantity r i  is measurable for instance via the static polarisability ,y 

,y = r t  = lim Re K ( w  +iO)/w. (13) 
W” 

In two dimensions it is physically clear that a diverging length analogous to r: must 
exist (see (5) and ( loa ) ) .  However, long time tail effects are so prominent that it 
cannot be expressed by (12) and (13) and the static polarisability becomes infinite for 
Pc < P < 1. 
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In conclusion, we have shown that the density relaxation function is related to the 
pair connectedness and consequently a scaling assumption is plausible near pc.  The 
probability of finding the particle at the site where it has started from for t + 00 could 
be identified with the generating function of percolation theory. Due to finite clusters 
there is even in the conducting phase ( p > p, )  a non-ergodic singularity, whence a 
Green-Kubo identity cannot hold, The prefactor of this S ( w )  contribution was shown 
to exhibit a non-analyticity= at pc. Using the scaling assumption for @ we discussed 
the analogue of the localisation length for p > pc. 

We are grateful to Professor W Gotze for many helpful discussions. One of us (JK) 
wishes to thank him and the TUM for kind hospitality as well as Professor D Stauffer 
and Dr T Vicsek for valuable discussions. 
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